Geometric characterization of optimal electrode designs for improved droplet charging and actuation.
نویسندگان
چکیده
Droplet charging characteristics depending on the geometry of charging electrodes have been investigated experimentally and numerically. In the experiments, two contrasting electrode systems are examined: pin-pin versus planar-planar types. To confirm the different charging behaviours on each electrode, an asymmetric system of a pin-planar type has also been examined. From the experimental and numerical results, it has been found that the droplet charge can be significantly increased (more than four times) with pin type electrodes compared with planar ones due to the increase in surface charge density by the intensification of the electric field around the charging electrode. Moreover, as the system scale becomes smaller, the superior charging effect becomes greater. Through comprehensive numerical studies on the effects of the cross-sectional area and length of a charging electrode, we have found the optimal geometric design of an electrode for droplet charging and actuation. The implications for basic understanding of the charging phenomenon and electrode design of microfluidic systems are discussed.
منابع مشابه
A novel actuation method of transporting droplets by using electrical charging of droplet in a dielectric fluid.
We evaluate the feasibility of manipulating droplets in two dimensions by exploiting Coulombic forces acting on conductive droplets immersed in a dielectric fluid. When a droplet suspended in an immiscible fluid is located near an electrode under a dc voltage, the droplet can be charged by direct contact, by charge transfer along an electrically conducting path, or by both mechanisms. This proc...
متن کاملLateral actuation of an organic droplet on conjugated polymer electrodes via imbalanced interfacial tensions.
This paper presents a new mechanism for the controlled lateral actuation of organic droplets on dodecylbenzenesulfonate-doped polypyrrole (PPy(DBS)) electrodes at low voltages (∼0.9 V) in an aqueous environment. The droplet actuation is based on the tunable surface wetting properties of the polymer electrodes induced by electrochemical redox reactions. The contact angle of a dichloromethane (DC...
متن کاملAn energy-based model for electrowetting-induced droplet actuation
Electrowetting (EW) induced droplet motion has been explored in the past decade in view of its promising applications in the field of microfluidics. This paper demonstrates the potential of energy-based analyses for modeling the performance of EW-based fluid actuation systems. Analyses based on system energy minimization offer simplified modeling tools to predict the overall performance of EW s...
متن کاملEnergy-Based Model for Electrowetting-Induced Droplet Actuation
Electrowetting (EW) induced droplet motion has been explored in the past decade in view of its promising applications in the field of microfluidics. This paper demonstrates the potential of energy-based analyses for modeling the performance of EW-based fluid actuation systems. Analyses based on system energy minimization offer simplified modeling tools to predict overall performance of EW syste...
متن کاملModeling and Control of Electrowetting Induced Droplet Motion
In this paper, a general methodology for the dynamic study of electrostatically actuated droplets is presented. A simplified 1D transient model is developed to investigate the transient response of a droplet to an actuation voltage and to study the effect of geometrical and fluid-thermal properties and electrical parameters on this behavior. First, the general approach for the dynamic droplet m...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- The Analyst
دوره 138 24 شماره
صفحات -
تاریخ انتشار 2013